Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
BMJ Open ; 12(12): e066212, 2022 12 14.
Article in English | MEDLINE | ID: covidwho-2307639

ABSTRACT

OBJECTIVES: To establish barriers and motivators underlying research engagement among early-career practitioners in nephrology across the UK, in order to guide potential interventions to enhance research involvement in renal units. DESIGN: Cross-sectional online survey employing a range of free-text, Likert scale and binomial/multiple-choice responses, distributed via mailing lists and social media. Topics covered research experience, research involvement and barriers, impact of COVID-19 and strategies to improve research engagement. Thematic analysis was used to assess free-text responses. SETTING: Renal units throughout the UK. PARTICIPANTS: Non-consultant healthcare staff self-identifying as working in nephrology were included (n=211), with responses from non-UK respondents or consultant nephrologists excluded (n=12). RESULTS: Responses were received from across the multidisciplinary team (physicians (n=83) and nurses (n=83)) and other allied health professionals (n=45). Most were aware of ongoing local research, but under half of them were actively involved. Multivariate analysis indicated employment as a physician, protected time for research activity and provision of appropriate training were associated with greater research experience and output. There was general enthusiasm to undertake research, but perceived barriers included insufficient staffing, lack of time, funding and encouragement. COVID-19 was felt to have further impacted negatively upon opportunities. Among the suggested strategies to promote engagement, mentorship and an online research resource were felt to be of most interest. CONCLUSIONS: In the first survey of this type in nephrology, we demonstrate differences across the multidisciplinary spectrum in perceived research experience and accessibility, which have been worsened by COVID-19. Our findings will guide strategies to broaden engagement in early-career practitioners and serve as a baseline to assess the impact of these interventions.


Subject(s)
COVID-19 , Nephrology , Humans , Cross-Sectional Studies , COVID-19/epidemiology , Surveys and Questionnaires , Nephrologists
2.
J Diabetes Complications ; 37(4): 108411, 2023 04.
Article in English | MEDLINE | ID: covidwho-2256944

ABSTRACT

AIMS: Contemporary patterns of care of patients with chronic kidney disease (CKD) associated with type 2 diabetes (T2D) and the adoption of finerenone are not known. The FINE-REAL study (NCT05348733) is a prospective observational study in patients with CKD and T2D to provide insights into the use of the nonsteroidal mineralocorticoid receptor antagonist (MRA) finerenone in clinical practice. METHODS: FINE-REAL is an international, prospective, multicenter, single-arm study enrolling approximately 5500 adults with CKD and T2D in an estimated 200 sites across 22 countries. The study is anticipated to be ongoing until 2027. RESULTS: The primary objective is to describe treatment patterns in patients with CKD and T2D treated with finerenone in routine clinical practice. Secondary objectives include assessment of safety with finerenone. Other endpoints include characterization of healthcare resource utilization and occurrence of newly diagnosed diabetic retinopathy or its progression from baseline in patients with existing disease. A biobank is being organized for future explorative analyses with inclusion of participants from the United States. CONCLUSIONS: FINE-REAL is the first prospective observational study with a nonsteroidal MRA in a population with CKD and T2D and is expected to provide meaningful insights into the treatment of CKD associated with T2D. FINE-REAL will inform decision-making with respect to initiation of finerenone in patients with CKD and T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Renal Insufficiency, Chronic , Adult , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/chemically induced , Prospective Studies , Mineralocorticoid Receptor Antagonists/adverse effects , Double-Blind Method , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy
3.
Clin Kidney J ; 14(6): 1570-1578, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-2160997

ABSTRACT

BACKGROUND: Real-world data for patients with chronic kidney disease (CKD), specifically pertaining to clinical management, metabolic control, treatment patterns, quality of life (QoL) and dietary patterns, are limited. Understanding these gaps using real-world, routine care data will improve our understanding of the challenges and consequences faced by patients with CKD, and will facilitate the long-term goal of improving their management and prognosis. METHODS: DISCOVER CKD follows an enriched hybrid study design, with both retrospective and prospective patient cohorts, integrating primary and secondary data from patients with CKD from China, Italy, Japan, Sweden, the UK and the USA. Data will be prospectively captured over a 3-year period from >1000 patients with CKD who will be followed up for at least 1 year via electronic case report form entry during routine clinical visits and also via a mobile/tablet-based application, enabling the capture of patient-reported outcomes (PROs). In-depth interviews will be conducted in a subset of ∼100 patients. Separately, secondary data will be retrospectively captured from >2 000 000 patients with CKD, extracted from existing datasets and registries. RESULTS: The DISCOVER CKD program captures and will report on patient demographics, biomarker and laboratory measurements, medical histories, clinical outcomes, healthcare resource utilization, medications, dietary patterns, physical activity and PROs (including QoL and qualitative interviews). CONCLUSIONS: The DISCOVER CKD program will provide contemporary real-world insight to inform clinical practice and improve our understanding of the epidemiology and clinical and economic burden of CKD, as well as determinants of clinical outcomes and PROs from a range of geographical regions in a real-world CKD setting.

4.
Diabetes Ther ; 13(5): 847-872, 2022 May.
Article in English | MEDLINE | ID: covidwho-1750861

ABSTRACT

Over recent years, the expanding evidence base for sodium-glucose cotransporter-2 inhibitor (SGLT2i) therapies has revealed benefits beyond their glucose-lowering efficacy in the treatment of Type 2 diabetes mellitus (T2DM), resulting in their recognition as cardiorenal medicines. While SGLT2is continue to be recommended among the second-line therapies for the treatment of hyperglycaemia, their true value now extends to the prevention of debilitating and costly cardiovascular and renal events for high-risk individuals, with particular benefit shown in reducing major adverse cardiac events and heart failure (HF) and slowing the progression of chronic kidney disease. However, SGLT2i usage is still suboptimal among groups considered to be at greatest risk of cardiorenal complications. The ongoing coronavirus disease 2019 (COVID-19) pandemic has intensified financial pressures on healthcare systems, which may hamper further investment in newer effective medicines. Emerging evidence indicates that glycaemic control should be prioritised for people with T2DM in the era of COVID-19 and practical advice on the use of T2DM medications during periods of acute illness remains important, particularly for healthcare professionals working in primary care who face multiple competing priorities. This article provides the latest update from the Improving Diabetes Steering Committee, including perspectives on the value of SGLT2is as cost-effective therapies within the T2DM treatment paradigm, with particular focus on the latest published evidence relating to the prevention or slowing of cardiorenal complications. The implications for ongoing and future approaches to diabetes care are considered in the light of the continuing coronavirus pandemic, and relevant aspects of international treatment guidelines are highlighted with practical advice on the appropriate use of SGLT2is in commonly occurring T2DM clinical scenarios. The 'SGLT2i Prescribing Tool for T2DM Management', previously published by the Steering Committee, has been updated to reflect the latest evidence and is provided in the Supplementary Materials to help support clinicians delivering T2DM care.

5.
N Engl J Med ; 385(25): 2325-2335, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1575626

ABSTRACT

BACKGROUND: Among patients with chronic kidney disease (CKD), the use of recombinant human erythropoietin and its derivatives for the treatment of anemia has been linked to a possibly increased risk of stroke, myocardial infarction, and other adverse events. Several trials have suggested that hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors (PHIs) are as effective as erythropoiesis-stimulating agents (ESAs) in increasing hemoglobin levels. METHODS: In this randomized, open-label, phase 3 trial, we assigned patients with CKD who were undergoing dialysis and who had a hemoglobin level of 8.0 to 11.5 g per deciliter to receive an oral HIF-PHI (daprodustat) or an injectable ESA (epoetin alfa if they were receiving hemodialysis or darbepoetin alfa if they were receiving peritoneal dialysis). The two primary outcomes were the mean change in the hemoglobin level from baseline to weeks 28 through 52 (noninferiority margin, -0.75 g per deciliter) and the first occurrence of a major adverse cardiovascular event (a composite of death from any cause, nonfatal myocardial infarction, or nonfatal stroke), with a noninferiority margin of 1.25. RESULTS: A total of 2964 patients underwent randomization. The mean (±SD) baseline hemoglobin level was 10.4±1.0 g per deciliter overall. The mean (±SE) change in the hemoglobin level from baseline to weeks 28 through 52 was 0.28±0.02 g per deciliter in the daprodustat group and 0.10±0.02 g per deciliter in the ESA group (difference, 0.18 g per deciliter; 95% confidence interval [CI], 0.12 to 0.24), which met the prespecified noninferiority margin of -0.75 g per deciliter. During a median follow-up of 2.5 years, a major adverse cardiovascular event occurred in 374 of 1487 patients (25.2%) in the daprodustat group and in 394 of 1477 (26.7%) in the ESA group (hazard ratio, 0.93; 95% CI, 0.81 to 1.07), which also met the prespecified noninferiority margin for daprodustat. The percentages of patients with other adverse events were similar in the two groups. CONCLUSIONS: Among patients with CKD undergoing dialysis, daprodustat was noninferior to ESAs regarding the change in the hemoglobin level from baseline and cardiovascular outcomes. (Funded by GlaxoSmithKline; ASCEND-D ClinicalTrials.gov number, NCT02879305.).


Subject(s)
Anemia/drug therapy , Barbiturates/therapeutic use , Darbepoetin alfa/therapeutic use , Epoetin Alfa/therapeutic use , Glycine/analogs & derivatives , Hematinics/therapeutic use , Renal Dialysis , Renal Insufficiency, Chronic/complications , Aged , Anemia/etiology , Barbiturates/adverse effects , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/mortality , Darbepoetin alfa/adverse effects , Epoetin Alfa/adverse effects , Female , Glycine/adverse effects , Glycine/therapeutic use , Hematinics/adverse effects , Hemoglobins/analysis , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Intention to Treat Analysis , Male , Middle Aged , Myocardial Infarction/epidemiology , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/therapy , Stroke/epidemiology
6.
N Engl J Med ; 385(25): 2313-2324, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1575625

ABSTRACT

BACKGROUND: Daprodustat is an oral hypoxia-inducible factor prolyl hydroxylase inhibitor. In patients with chronic kidney disease (CKD) who are not undergoing dialysis, the efficacy and safety of daprodustat, as compared with the conventional erythropoiesis-stimulating agent darbepoetin alfa, are unknown. METHODS: In this randomized, open-label, phase 3 trial with blinded adjudication of cardiovascular outcomes, we compared daprodustat with darbepoetin alfa for the treatment of anemia in patients with CKD who were not undergoing dialysis. The primary outcomes were the mean change in the hemoglobin level from baseline to weeks 28 through 52 and the first occurrence of a major adverse cardiovascular event (MACE; a composite of death from any cause, nonfatal myocardial infarction, or nonfatal stroke). RESULTS: Overall, 3872 patients were randomly assigned to receive daprodustat or darbepoetin alfa. The mean (±SD) baseline hemoglobin levels were similar in the two groups. The mean (±SE) change in the hemoglobin level from baseline to weeks 28 through 52 was 0.74±0.02 g per deciliter in the daprodustat group and 0.66±0.02 g per deciliter in the darbepoetin alfa group (difference, 0.08 g per deciliter; 95% confidence interval [CI], 0.03 to 0.13), which met the prespecified noninferiority margin of -0.75 g per deciliter. During a median follow-up of 1.9 years, a first MACE occurred in 378 of 1937 patients (19.5%) in the daprodustat group and in 371 of 1935 patients (19.2%) in the darbepoetin alfa group (hazard ratio, 1.03; 95% CI, 0.89 to 1.19), which met the prespecified noninferiority margin of 1.25. The percentages of patients with adverse events were similar in the two groups. CONCLUSIONS: Among patients with CKD and anemia who were not undergoing dialysis, daprodustat was noninferior to darbepoetin alfa with respect to the change in the hemoglobin level from baseline and with respect to cardiovascular outcomes. (Funded by GlaxoSmithKline; ASCEND-ND ClinicalTrials.gov number, NCT02876835.).


Subject(s)
Anemia/drug therapy , Barbiturates/therapeutic use , Darbepoetin alfa/therapeutic use , Glycine/analogs & derivatives , Hematinics/therapeutic use , Renal Insufficiency, Chronic/complications , Aged , Anemia/etiology , Barbiturates/adverse effects , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/mortality , Darbepoetin alfa/adverse effects , Female , Glycine/adverse effects , Glycine/therapeutic use , Hematinics/adverse effects , Hemoglobins/analysis , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Intention to Treat Analysis , Male , Middle Aged , Myocardial Infarction/epidemiology , Renal Insufficiency, Chronic/blood , Stroke/epidemiology
7.
Diabetes ; 69:N.PAG-N.PAG, 2020.
Article in English | Academic Search Complete | ID: covidwho-1456235

ABSTRACT

The benefits of CANA for HF in people with T2D at CV risk appeared to be statistically mediated by erythrocyte concentration, serum urate, and urinary albumin:creatinine ratio (UACR) in the CANVAS Program. CANA reduced the risk of HF in patients with T2D and CKD in CREDENCE. We explored potential mediators of CANA's effects on the composite of hospitalized HF (HHF) and CV death. Mediation analyses are hypothesis-generating observational analyses that calculate the effect of selected biomarkers on the overall treatment effect using time-varying Cox regression. We compared hazard ratios for the effect of randomized treatment from an unadjusted model versus a model adjusted for the average post-randomization level of the biomarker of interest. 62 routine clinical biomarkers and vital sign indicators were collected on all participants and tested as potential mediators. When multiple potential mediators represented a single pathway, those with the strongest univariable mediation were tested in multivariable models. 12 biomarkers, including 3 markers of volume/erythropoiesis (hematocrit [24%], hemoglobin [32%], erythrocytes [27%]), 2 markers of kidney function (UACR [28%], eGFR from wk 3 [7.4%]), and serum albumin (39%), serum protein (24%), lactate dehydrogenase (13%), systolic BP (10%), urine pH (8%), serum urate (7%) and gamma glutamyltransferase (4%), mediated the effect of CANA on HHF/CV death in univariable models. In the multivariable model, hemoglobin, UACR, serum urate and systolic BP maximized cumulative mediation (74%). A diverse set of potential mediators of CANA's effect on HHF/CV death were identified with serum albumin, hemoglobin (or its analogues) and UACR being the most important. The extent to which these mediators reflect underlying inflammatory, nutritional, volume-related or cardiorenal pathways is unclear and underscores the need for further research into the mechanisms of benefit of SGLT2 inhibitors. Disclosure: J. Li: Employee;Self;George Institute. B. Neal: Research Support;Self;Janssen Research & Development, LLC, Merck Schering Plough, Roche Pharma, Servier, Zydus Pharmaceuticals, Inc. Other Relationship;Self;Abbott, Janssen, Novartis, Pfizer, Roche, and Servier. H.L. Heerspink: Consultant;Self;AbbVie Inc., AstraZeneca, Boehringer Ingelheim International GmbH, CSL Behring, Gilead Sciences, Inc., Janssen Pharmaceuticals, Inc., Merck & Co., Inc., Mitsubishi Tanabe Pharma Corporation, Mundipharma International, Retrophin, Inc. C. Arnott: Employee;Self;George Institute for Global Health. C. Cannon: None. R. Agarwal: Other Relationship;Self;AbbVie Inc., Akebia Therapeutics, Amgen, AstraZeneca, Bayer Inc., Bird Rock Bio, Boehringer Ingelheim Pharmaceuticals, Inc., Celgene, Daiichi Sankyo, Eli Lilly and Company, GlaxoSmithKline plc., Ironwood Pharmaceuticals, Johnson & Johnson, Merck & Co., Inc., Novartis Pharmaceuticals Corporation, OPKO Health, Inc., Reata, Relypsa, Inc., Sandoz, Sanofi, Takeda Pharmaceutical Company Limited, ZS Pharma. G. Bakris: Consultant;Self;Alnylam, Merck & Co., Inc., Relypsa, Inc., Teijin Pharma Limited. Other Relationship;Self;Bayer AG, Novo Nordisk Inc., Vascular Dynamics. D.M. Charytan: Advisory Panel;Self;Allena Pharmaceuticals, AstraZeneca, Merck & Co., Inc., PLC Medical. Employee;Self;BAIM Institute. Research Support;Self;Janssen Pharmaceuticals, Inc. Other Relationship;Self;Baim, Amgen, Medtronic/Covidien, Zoll, Fresenius, Daiichi Sankyo, Douglas and London, Eli Lilly, Merck, Gilead, and Novo Nordisk. D. de Zeeuw: Advisory Panel;Self;AbbVie Inc., Bayer AG, Boehringer Ingelheim International GmbH, Fresenius Medical Care, Janssen Pharmaceuticals, Inc., Mitsubishi Tanabe Pharma Corporation. T. Greene: Other Relationship;Self;Janssen, Durect, and Pfizer. A. Levin: Consultant;Self;Janssen Pharmaceuticals, Inc. Research Support;Self;AstraZeneca K.K., Boehringer Ingelheim Pharmaceuticals, Inc., Gilead Sciences, Inc. R. Oh: Employee;Self;Janssen Pharmaceuticals, Inc. C.A. Pollock: Advisory Panel;Self;AstraZeneca, Boehringer Ingelheim Pharma euticals, Inc., Eli Lilly and Company, Merck Sharp & Dohme Corp., Otsuka Pharmaceutical Co., Ltd., Vifor Pharma Group. Research Support;Self;Diabetes Australia. Speaker's Bureau;Self;AstraZeneca, Cipla Inc., MedErgy, Medscape, Mitsubishi Tanabe Pharma Corporation, Novartis AG, Otsuka Pharmaceutical Co., Ltd., Vifor Pharma Group. Other Relationship;Self;Amgen, George Institute for Global Health, Gilead Sciences, Inc., Janssen Pharmaceuticals, Inc. D.C. Wheeler: Advisory Panel;Self;Boehringer Ingelheim Pharmaceuticals, Inc., Reata. Consultant;Self;AstraZeneca, Bayer AG, GlaxoSmithKline, Janssen Pharmaceuticals, Inc. Speaker's Bureau;Self;Amgen, Astellas Pharma Inc., Mundipharma International, Napp Pharmaceuticals. Y. Yavin: Employee;Self;Janssen Research & Development, LLC. H. Zhang: Employee;Self;Renal Division of Peking University First Hospital. B. Zinman: Advisory Panel;Self;Abbott, Boehringer Ingelheim International GmbH, Eli Lilly and Company, Janssen Pharmaceuticals, Inc., Merck Sharp & Dohme Corp., Novo Nordisk Inc., Sanofi-Aventis. G. Di Tanna: Employee;Self;George Institute for Global Health. V. Perkovic: Other Relationship;Self;See Other Relationship field. K.W. Mahaffey: Consultant;Self;Medscape, Mitsubishi, Myokardia, NIH, Novartis, Novo Nordisk, Portola, Radiometer, Regeneron, SmartMedics, Springer Publishing, UCSF. Research Support;Self;Afferent, Amgen, Apple, Inc, AstraZeneca, Cardiva Medical, Inc, Daiichi, Ferring, Google (Verily), Johnson & Johnson, Luitpold, Medtronic, Merck, NIH, Novartis, Sanofi, St. Jude, Tenax. M. Jardine: Other Relationship;Self;See Other Relationship field. Funding: Janssen Research & Development, LLC [ABSTRACT FROM AUTHOR] Copyright of Diabetes is the property of American Diabetes Association and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

8.
Diabetes ; 69:N.PAG-N.PAG, 2020.
Article in English | Academic Search Complete | ID: covidwho-1456230

ABSTRACT

Background: The sodium glucose co-transporter 2 inhibitor canagliflozin reduced the risk of first hospitalization for heart failure (HHF) in the CREDENCE trial. The prevention of recurrent events is important to patients, clinicians and payers. In this post-hoc analysis, we evaluated the effect of canagliflozin on total HHF events. Methods: The CREDENCE trial compared canagliflozin or matching placebo and followed patients for a median of 2.6 years. The study included 4401 participants with type 2 diabetes, substantial albuminuria and estimated glomerular filtration rate (eGFR) 30 to <90 ml/min/1.73 m2 receiving renin-angiotensin system blockade. Negative binomial regression models were performed to assess the effect of canagliflozin on the total number of HHF events. Results: The mean age of participants was 63 years, with a mean eGFR of 56.3 ml/min/1.73 m2, while 50% had a history of previous cardiovascular disease and 15% had a history of heart failure. During the trial, 230 people experienced 326 total HHF events, with 166 having 1 event, 43 having 2 events, 15 having 3 events, and 6 having ≥4 events;thus, 42% of those experiencing at least 1 event went on to suffer a recurrent event during the follow up. Canagliflozin reduced first HHF events by 39% (hazard ratio [HR], 0.61;95% confidence interval [CI] 0.47-0.80;P <0.001;number needed to treat [NNT], 46;95% CI 29-124) and total HHF events by 36% (event rates of 22.0 and 34.8 participants with an event/1000 patient-years with canagliflozin and placebo, respectively;incidence rate ratio [RR], 0.64;95% CI 0.56-0.73;P <0.001). Conclusions: Canagliflozin significantly reduced first and recurrent HHF events. These findings provide further support for the benefit of continuing canagliflozin therapy after an index heart failure presentation to prevent recurrent HHF events. Disclosure: J. Li: Employee;Self;George Institute. M.J. Jardine: Other Relationship;Self;See Other Relationship field. B. Neal: Research Support;Self;Janssen Research & Development, LLC, Merck Schering Plough, Roche Pharma, Servier, Zydus Pharmaceuticals, Inc. Other Relationship;Self;Abbott, Janssen, Novartis, Pfizer, Roche, and Servier. H.L. Heerspink: Consultant;Self;AbbVie Inc., AstraZeneca, Boehringer Ingelheim International GmbH, CSL Behring, Gilead Sciences, Inc., Janssen Pharmaceuticals, Inc., Merck & Co., Inc., Mitsubishi Tanabe Pharma Corporation, Mundipharma International, Retrophin, Inc. C. Cannon: None. R. Agarwal: Other Relationship;Self;AbbVie Inc., Akebia Therapeutics, Amgen, AstraZeneca, Bayer Inc., Bird Rock Bio, Boehringer Ingelheim Pharmaceuticals, Inc., Celgene, Daiichi Sankyo, Eli Lilly and Company, GlaxoSmithKline plc., Ironwood Pharmaceuticals, Johnson & Johnson, Merck & Co., Inc., Novartis Pharmaceuticals Corporation, OPKO Health, Inc., Reata, Relypsa, Inc., Sandoz, Sanofi, Takeda Pharmaceutical Company Limited, ZS Pharma. G. Bakris: Consultant;Self;Alnylam, Merck & Co., Inc., Relypsa, Inc., Teijin Pharma Limited. Other Relationship;Self;Bayer AG, Novo Nordisk Inc., Vascular Dynamics. D.M. Charytan: Advisory Panel;Self;Allena Pharmaceuticals, AstraZeneca, Merck & Co., Inc., PLC Medical. Employee;Self;BAIM Institute. Research Support;Self;Janssen Pharmaceuticals, Inc. Other Relationship;Self;Baim, Amgen, Medtronic/Covidien, Zoll, Fresenius, Daiichi Sankyo, Douglas and London, Eli Lilly, Merck, Gilead, and Novo Nordisk. D. de Zeeuw: Advisory Panel;Self;AbbVie Inc., Bayer AG, Boehringer Ingelheim International GmbH, Fresenius Medical Care, Janssen Pharmaceuticals, Inc., Mitsubishi Tanabe Pharma Corporation. R. Edwards: Employee;Self;Janssen. T. Greene: Other Relationship;Self;Janssen, Durect, and Pfizer. A. Levin: Consultant;Self;Janssen Pharmaceuticals, Inc. Research Support;Self;AstraZeneca K.K., Boehringer Ingelheim Pharmaceuticals, Inc., Gilead Sciences, Inc. C.A. Pollock: Advisory Panel;Self;AstraZeneca, Boehringer Ingelheim Pharmaceuticals, Inc., Eli Lilly and Company, Merck Sharp & Dohme Corp., Otsuka Pharmaceutical Co., Ltd., Vifor Pharma Group. Research Support;Self;Diabetes Australia. Speaker's Bureau;Self;AstraZeneca, Cipla Inc., MedErgy, Medscape, Mitsubishi Tanabe Pharma Corporation, Novartis AG, Otsuka Pharmaceutical Co., Ltd., Vifor Pharma Group. Other Relationship;Self;Amgen, George Institute for Global Health, Gilead Sciences, Inc., Janssen Pharmaceuticals, Inc. N. Rosenthal: None. D.C. Wheeler: Advisory Panel;Self;Boehringer Ingelheim Pharmaceuticals, Inc., Reata. Consultant;Self;AstraZeneca, Bayer AG, GlaxoSmithKline, Janssen Pharmaceuticals, Inc. Speaker's Bureau;Self;Amgen, Astellas Pharma Inc., Mundipharma International, Napp Pharmaceuticals. H. Zhang: Employee;Self;Renal Division of Peking University First Hospital. B. Zinman: Advisory Panel;Self;Abbott, Boehringer Ingelheim International GmbH, Eli Lilly and Company, Janssen Pharmaceuticals, Inc., Merck Sharp & Dohme Corp., Novo Nordisk Inc., Sanofi-Aventis. V. Perkovic: Other Relationship;Self;See Other Relationship field. K.W. Mahaffey: Consultant;Self;Medscape, Mitsubishi, Myokardia, NIH, Novartis, Novo Nordisk, Portola, Radiometer, Regeneron, SmartMedics, Springer Publishing, UCSF. Research Support;Self;Afferent, Amgen, Apple, Inc, AstraZeneca, Cardiva Medical, Inc, Daiichi, Ferring, Google (Verily), Johnson & Johnson, Luitpold, Medtronic, Merck, NIH, Novartis, Sanofi, St. Jude, Tenax. C. Arnott: Employee;Self;George Institute for Global Health. Funding: Janssen Research & Development, LLC [ABSTRACT FROM AUTHOR] Copyright of Diabetes is the property of American Diabetes Association and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

9.
Diabetes ; 69:N.PAG-N.PAG, 2020.
Article in English | Academic Search Complete | ID: covidwho-1456229

ABSTRACT

Background: Canagliflozin (CANA) slows progression of chronic kidney disease (CKD) in people with type 2 diabetes. CANA also induces a reversible acute decline in estimated glomerular filtration rate (eGFR), which is believed to be a hemodynamic effect. Predictors of the initial decline and its association with long-term eGFR trajectories and safety outcomes are unknown. Methods: This post-hoc study of the CREDENCE trial included 4289 patients with type 2 diabetes and CKD who had eGFR measured at both baseline and week 3. Participants were categorized by percentage decline in eGFR at week 3: >10%, ≤10% to >0%, and ≤0%. Baseline characteristics associated with acute eGFR declines >10% were evaluated using logistic regression. Long-term eGFR decline and safety outcomes were estimated in each eGFR decline category by linear mixed effects models and Cox regression after adjustment for laboratory measures and medication use. Results: More participants in the CANA (956 [45%]) versus placebo (PBO) group (450 [21%]) had an acute eGFR decline >10% (p<0.001). A >30% decline occurred infrequently (89 [4%] with CANA and 39 [2%] with PBO;p<0.001). In the CANA but not in the PBO group, older age (OR CANA 1.17, 95% CI 1.05-1.31;per 10 years) and history of heart failure (OR CANA 0.77, 0.59-0.99) were associated with a higher and lower likelihood of an acute eGFR decline >10%, respectively (both p for interaction <0.05). Following the initial eGFR change, long-term eGFR trajectories as well as overall safety profiles were similar across eGFR decline categories (all p values >0.05). Results were consistent when other decline thresholds (>20%) were used and in subgroup analysis by baseline eGFR (30-<45, 45-<60, and 60-<90 ml/min/1.73 m2). Conclusions: Although acute eGFR declines >10% occurred in nearly half of all patients following initiation of CANA, the benefit of CANA compared with placebo was observed regardless of the acute eGFR decline and safety profiles were similar. Disclosure: M. Oshima: Research Support;Self;Japan Society for the Promotion of Science Program for Fostering Globally Talented Researchers. M.J. Jardine: Other Relationship;Self;See Other Relationship field. R. Agarwal: Other Relationship;Self;AbbVie Inc., Akebia Therapeutics, Amgen, AstraZeneca, Bayer Inc., Bird Rock Bio, Boehringer Ingelheim Pharmaceuticals, Inc., Celgene, Daiichi Sankyo, Eli Lilly and Company, GlaxoSmithKline plc., Ironwood Pharmaceuticals, Johnson & Johnson, Merck & Co., Inc., Novartis Pharmaceuticals Corporation, OPKO Health, Inc., Reata, Relypsa, Inc., Sandoz, Sanofi, Takeda Pharmaceutical Company Limited, ZS Pharma. G. Bakris: Consultant;Self;Alnylam, Merck & Co., Inc., Relypsa, Inc., Teijin Pharma Limited. Other Relationship;Self;Bayer AG, Novo Nordisk Inc., Vascular Dynamics. C. Cannon: None. D.M. Charytan: Advisory Panel;Self;Allena Pharmaceuticals, AstraZeneca, Merck & Co., Inc., PLC Medical. Employee;Self;BAIM Institute. Research Support;Self;Janssen Pharmaceuticals, Inc. Other Relationship;Self;Baim, Amgen, Medtronic/Covidien, Zoll, Fresenius, Daiichi Sankyo, Douglas and London, Eli Lilly, Merck, Gilead, and Novo Nordisk. D. de Zeeuw: Advisory Panel;Self;AbbVie Inc., Bayer AG, Boehringer Ingelheim International GmbH, Fresenius Medical Care, Janssen Pharmaceuticals, Inc., Mitsubishi Tanabe Pharma Corporation. R. Edwards: Employee;Self;Janssen. T. Greene: Other Relationship;Self;Janssen, Durect, and Pfizer. A. Levin: Consultant;Self;Janssen Pharmaceuticals, Inc. Research Support;Self;AstraZeneca K.K., Boehringer Ingelheim Pharmaceuticals, Inc., Gilead Sciences, Inc. K.W. Mahaffey: Consultant;Self;Medscape, Mitsubishi, Myokardia, NIH, Novartis, Novo Nordisk, Portola, Radiometer, Regeneron, SmartMedics, Springer Publishing, UCSF. Research Support;Self;Afferent, Amgen, Apple, Inc, AstraZeneca, Cardiva Medical, Inc, Daiichi, Ferring, Google (Verily), Johnson & Johnson, Luitpold, Medtronic, Merck, NIH, Novartis, Sanofi, St. Jude, Tenax. B. Neal: Research Support;Self;Janssen Research & Development LLC, Merck Schering Plough, Roche Pharma, Servier, Zydus Pharmaceuticals, Inc. Other Relationship;Self;Abbott, Janssen, Novartis, Pfizer, Roche, and Servier. C.A. Pollock: Advisory Panel;Self;AstraZeneca, Boehringer Ingelheim Pharmaceuticals, Inc., Eli Lilly and Company, Merck Sharp & Dohme Corp., Otsuka Pharmaceutical Co., Ltd., Vifor Pharma Group. Research Support;Self;Diabetes Australia. Speaker's Bureau;Self;AstraZeneca, Cipla Inc., MedErgy, Medscape, Mitsubishi Tanabe Pharma Corporation, Novartis AG, Otsuka Pharmaceutical Co., Ltd., Vifor Pharma Group. Other Relationship;Self;Amgen, George Institute for Global Health, Gilead Sciences, Inc., Janssen Pharmaceuticals, Inc. N. Rosenthal: None. D.C. Wheeler: Advisory Panel;Self;Boehringer Ingelheim Pharmaceuticals, Inc., Reata. Consultant;Self;AstraZeneca, Bayer AG, GlaxoSmithKline, Janssen Pharmaceuticals, Inc. Speaker's Bureau;Self;Amgen, Astellas Pharma Inc., Mundipharma International, Napp Pharmaceuticals. H. Zhang: Employee;Self;Renal Division of Peking University First Hospital. B. Zinman: Advisory Panel;Self;Abbott, Boehringer Ingelheim International GmbH, Eli Lilly and Company, Janssen Pharmaceuticals, Inc., Merck Sharp & Dohme Corp., Novo Nordisk Inc., Sanofi-Aventis. V. Perkovic: Other Relationship;Self;See Other Relationship field. H.L. Heerspink: Consultant;Self;AbbVie Inc., AstraZeneca, Boehringer Ingelheim International GmbH, CSL Behring, Gilead Sciences, Inc., Janssen Pharmaceuticals, Inc., Merck & Co., Inc., Mitsubishi Tanabe Pharma Corporation, Mundipharma International, Retrophin, Inc. Funding: Janssen Research & Development, LLC [ABSTRACT FROM AUTHOR] Copyright of Diabetes is the property of American Diabetes Association and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

10.
Spat Spatiotemporal Epidemiol ; 36: 100401, 2021 02.
Article in English | MEDLINE | ID: covidwho-1014822

ABSTRACT

Surveillance data obtained by public health agencies for COVID-19 are likely inaccurate due to undercounting and misdiagnosing. Using a Bayesian approach, we sought to reduce bias in the estimates of prevalence of COVID-19 in Philadelphia, PA at the ZIP code level. After evaluating various modeling approaches in a simulation study, we estimated true prevalence by ZIP code with and without conditioning on an area deprivation index (ADI). As of June 10, 2020, in Philadelphia, the observed citywide period prevalence was 1.5%. After accounting for bias in the surveillance data, the median posterior citywide true prevalence was 2.3% when accounting for ADI and 2.1% when not. Overall the median posterior surveillance sensitivity and specificity from the models were similar, about 60% and more than 99%, respectively. Surveillance of COVID-19 in Philadelphia tends to understate discrepancies in burden for the more affected areas, potentially misinforming mitigation priorities.


Subject(s)
Bayes Theorem , COVID-19/epidemiology , Population Surveillance , Spatial Analysis , Bias , Humans , Philadelphia/epidemiology , Prevalence , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL